An accuracy measurement method for star trackers based on direct astronomic observation
نویسندگان
چکیده
Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.
منابع مشابه
Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers
The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysi...
متن کاملLow-Frequency Error Extraction and Compensation for Attitude Measurements from STECE Star Tracker
The low frequency errors (LFE) of star trackers are the most penalizing errors for high-accuracy satellite attitude determination. Two test star trackers- have been mounted on the Space Technology Experiment and Climate Exploration (STECE) satellite, a small satellite mission developed by China. To extract and compensate the LFE of the attitude measurements for the two test star trackers, a new...
متن کاملOptical alignment of the Global Precipitation Measurement (GPM) star trackers
The optical alignment of the star trackers on the Global Precipitation Measurement (GPM) core spacecraft at NAS A Goddard Space Flight Center (GSFC) was challenging due to the layout and structural design of the GPM Lower B us Structure (LBS) in which the star trackers are mounted as well as the presence of the star tracker shades that blocke d line-of-sight to the primary star tracker optical ...
متن کاملارائه الگوریتم شناسایی ستاره بر مبنای رأیگیری هندسی به منظور استفاده در ردیابهای ستارهای
Star identification is one of the most important stages in attitude determination with star trackers. This can be performed using matching algorithms between observed stars and a master star catalogue. The main challenge in this approach is to provide a fast and reliable identification algorithm that is sufficiently robust in different pointing views of the star tracker optical system in the sp...
متن کاملReducing Systematic Centroid Errors Induced by Fiber Optic Faceplates in Intensified High-Accuracy Star Trackers
Compared with traditional star trackers, intensified high-accuracy star trackers equipped with an image intensifier exhibit overwhelmingly superior dynamic performance. However, the multiple-fiber-optic faceplate structure in the image intensifier complicates the optoelectronic detecting system of star trackers and may cause considerable systematic centroid errors and poor attitude accuracy. Al...
متن کامل